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CHAPTER-1

DOUBLE LAPLACE TRANSFORM




1.1Introduction:

We are familiar with the Laplace Transform of function one variable, its properties
application. But there is almost nothing about the double Laplace Transform, its properties
& applications.

Double Laplace Transform is the most powerful methodology to solve partial differential
equations. It is very useful for solving Telegraphic, Integro-Difterential & Wave Equations
in many branches of Applied Mathematics as well as Engineering.

1.2 Definition:

The double Laplace transform has been defined by Estrin and Higgins in 1951 [1] as:

0

E(r,s): L[LX[g(x,t)]:]ze’“Je’pxg(x,t) dxdt=L,L[g(x,1)] ..(1), r,seC,

Where 9 (X;t) is the bivariate function of (x,t) € [0,00)x[0,) . Provided the improper
integral converges.

Definition of Inverse Double Laplace Transform [[17:

Inverse double Laplace transform with respect to v’ of (X, t) is given by

1

L [g(r.s)] = 5=

J- e g(r,s)dr (1.1)

This inversion gives rise the single transformed function g(X,S) . Then second

inversion w.r.t “s” gives the required function 9 (X; t)

ir~ 1 st o
L [g(x's)lzz—mff g(x,s)ds (1.2)

Combining both of the successive inversions (2) and (3) yields,

LU 9] = o Je e J _e*pS(r. s) dpds = L;'L; '[9 (r, )]

1.3 Existence Condition For Double Laplace Transform [27]:

Let us assume that a function g(x,t) is defined on [0,00)x[0,0) which is continuous and
as well as in exponential order.

1.e., for some a, be R.

Consider sup [| Q(X!t)_q < oo

ax-+bt
x>0, t=>0 e

In this case, the double Laplace transform of g(x,t)

7



LLAID}=g(r,s) = e [e ™g(x,ydxdt

Holds ¥V r>a & s>Db andis infinitely differentiable wr.t r>a & s>Db.

Study of these functions are supposed to be of exponential order.
Examples:
(1) Suppose h(x,t)=1 for x>0, t>0, then

1

LIh(G D] =T =h(x,9)
— 1 =
L [h(x,s)] == = h(r,s)
rs
= L L[] -

(2) Suppose h(x,t) =e® for all x, t>0, then
1

s—b

_

(r—a)(s—hb)

. r
(r—a)(s—b)’

L [h(x,t)] = h(x,s) =e™

LIh(x,s)] =h(r,s) =

— Lx L[ [eax+bt] —

i(ax+bt) .

(3) Suppose N(X,t) =€ for all x,t>0, then

1
s—ib

I—[[h(X, t)] — H(X’ S) — eiax

_ (rs—ab)+i (as+br)
(r—ia)(s—ib)  (r’+a?)(s*+b?)

L,[h(x,s)]=h(r,s)

_ (rs—ab)+i(as+br)

i(ax+bt)] _ 1
= L L[e™™]=h(r,s) (7 1a?)(s? +b?)

So,
B (rs—ab)
LxL[[COS(aX+bt)] - (rz —|—a2)(32 +b2)
(as+br)

L, L [sin(ax+Dbt)] =

(r2+a?)(s?*+b?)’



Some Suitable Double Laplace Transforms are given in tabular form

g(x, t) L [g(x, DI=9g(p,s)
1
l —_—
ps
(ax+ht) 1
€ (p—a)(s—b)
cos(ax +bt) (ps—abh)
(p?+a’)(s* +b%)
sin(ax + bt) (as+hbp)
(p* +a%)(s* +b%)

cosh(ax +bt)

N |-
1

)

sinh(ax + bt)

(piaj(sib}
L)

1l 1 [ 1 j
2|\p p+a/\s+b)|
e P f (x,1) f(p+a,s+b)
min!
xMg" (i) W ;swhere m, ne Z"
~I'(m+1) I'(n+1)
(i1) pm+1 JE » where m>1, n>-1
1 T
~/ xt E
Jo(a\/x_t) ﬁ
ps+a
(1) X of 1 1
erf(z J ()[p\/?](ph/g)
(ii)erf( t j
24/x

")




1.4 Basic Properties of Double Laplace Transforms [ 37]

(1) LL[e®™f (xt)]= T (r+a,s+b)

(2) LI @)a00)= 3 T Lfa[ 2| a0b50
(3) LLIT 1= 10 L LI901 =909

(4 LXL([f(xH)]:i[?(r)—?(s)]

(5) LL[f(x—1)] =r—;[T(r)+T(s)], when f is an even function

= 1 [?(r)—?(s)], when f is a odd function
r+s

(6) LXL[[f(x)H(x—t)]{[?(r)—?(ws)]
(7) LLIFGOH(E-x]= LT (r+9)]

(8) LXL([f<x)H(x+t)]=§[?(r)]

1
r(r+s)

(9) LLIH(x-1)]=

(10)LL B—ﬂ = pu(r,s)-u(0,5s)

(11) LL, Z—ﬂzsa(r,s)—ﬁ(p,O)
(12) L1, ‘2% = r?u(r,s) —ru(0,s) —ux(0,s)
(18) LXL[_Z%l_:sza(r,s)—sﬁ(r,O)—Gt(r,O)
[ o%u = — —
(14*) LXL[_axat}:rsu(p,s)—su(O,s)—ru(r,O)+u(0,O)

10



1.5 Some important results: [4 & 97]
Statement (1):

Suppose ¢(x,t)1s a bivariate continuous function in the positive region of
={(a,b):0< X<OO,O<t<OO}. [f the integral

e (X, t)dxdt

Ot=—3
Ot=—3

Converges at P=[,S=S; then integral converges for P > Py,S >S; .

Statement (2):

£ LLIg(xt)]=g(p,s) and

f(x,t) _f_fg(u,v)dvdu , (1.8)
then
LXL[{Hg(u,v)dvdu}zg(pLs’S) . (1.4)
Proof:

t
Denote h(x,t) = J- g (X, v)dv . By fundamental theorem of calculus
)

h, (x,1) = g(x,1) (1.5)
And

h(x,0) = 0. (1.6)
Invoking double Laplace transform in (1.5), we obtain
sh(p.s)—h(p.0) = g(p.s) (1.7)

And Single Laplace Transform of equation (1.6)

h(p,0) =0

Then equation (1.7) becomes,

11



From (1.8)

f(x,t) = j- h(u, t)du

f . (X,t) =h(X,t) and f(0,t) =0,

pf(p,s)— f(0,s)=h(p,s)

Now using (1.8) and (1.3), we get

L. L{g (u, v)dvdu} — %

12



CHAPTER 2

THE TELEGRAPHIC EQUATION
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2.1The Telegraph Equation [57:

Model of extremely small piece telegraph wire is taking as an electrical circuit, which obey
the resistor of resistance RdX and an inductance of coil is LdX. Using the current flow
through the wire of amount i(x,t) and voltage through resister is IROX.When that passing

in-between the coil is it Ldx . At any instance “t” with the position “x” is denoted by h(x,t) .
So the change of voltage between two ends of a piece of wire is

dh = (iR —itL)dx

Let us suppose that current i(x,t) can be emitted from the wire to ground, either by

resisters with conductance Gdx or by a capacitor with capacitance Cdx. The quantity that
emitted from the resistor ishGdX. As the charge on the capacitor isq = hCdx, the quantity

that emitted through the capacitor is u,Cdx .

Finally,
di = -hGdx—hCdx

On dividing both sides in the last expression by dX and assuming the limitdx —0, the
required differential equations are as follows

h, =Ri+Li =0.......... (k1)
Ch +Gh+i =0........... (k2)

. 0 .
Solving — (k2) for
g at( )

| =—Ch —Gh
And substituting the result into % (k1) gives
h_+Ri, +L(-Ch ~Gh)=0
— h,_+R(-Ch —Gh) + L(~ch, ~Gh) =0

Now, the telegraph equation is rewritten as

h, +(a+p)h +aph=c’h |

where ¢? :i,azg&ﬁzg;
LC C L

14



2.2 Use of Double Laplace Transform in Telegraphic Equation:

oz 0’1 o1
Q. Find the solution of y :¥+2§+ Z (Q. 1)

with the conditions

2(x,0) =e"; z,(x,0) = —2¢”
-2t -2t | (Q'Q)
z(0,t)=e",z,(0,t) =e
Solution:
Invoking double Laplace transform in both sides of the PDE (2.1), we get,
r2z(r,s)—rz(0,s) - zx(0,s)
=s2z(r,s)—sz(r,0) - z:(0,s) + 2sz(r, s) — 2z(r,0) + z(r, s)
Applying single Laplace transform on system (2.2)
2(r,0) = Z(r0)=——2_
(S VR (r-1
- 1 — 1
& 2(0,8) =——, 2,(0,8) =
(©.5) (s+2) «(0:5) (s+2)
Then,
2z r 1 2z S 2 = 2 =
] - T <= ’ - - - 2 ’ - - ’
=r-z(r,s) s12 512 s“z(r,s) r—1+r—1+ sz(r,s) I__1+z(r s)
= r 1 S
= z2(r,s)[r’ —=s* -2s-1] = + -~
s+2 s+2 p-1
ri-s’-2s-1
C (s+2)(r-)
= ;(r S) 1
S) = 2.3
(s+2)(r-1) (22)
Now, by taking inverse Laplace transtorm of (3) with respect to “s”
_ e 2t
= z(r,t) = ——— (2.4)
(r—1

Again, applying inverse Laplace transform of (4) w.r.t “r”,

— z(x,t) =e 2 X =

15



CHAPTER 3

THE WAVE EQUATION
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3.1The wave equation [6 & 10

There has an impotency of a typical homogeneous type well-known hyperbolic difterential
equation, which is known as wave equation. Here uses the time variable “t” and one or more

special variable X, X, X3,..., X, and a scalar function § = @ (Xi’ Xy eeny Xn;t) ,the model is
being made by g .

Basically U is the mechanical displacement of wave. The wave equation for g is
0°g

P c’V?g

y

where V = nabla operator , V> =V.V is the (spatial) Laplacian operator ; and C
is a constant.

This kind of differential equation appears in diftferent branches of physics and can be found
in many situations such as electro-magnetic wave, transverse vibration string, sound

propagation, bar with longitudinal vibration, etc. Solution of such kind of equation is called
wave function.

3.2 Use of Double Laplace Transform In Wave Equation:

Q. Iind out the solution of the following wave equation,

o°v(x,t) _ o°v(x,t)

o (3:1)
v(0,t) =0
ov(x,0) _0
ot > (3.2)
v(z,t) =1
v(x,t;) =0

P

Solution:

Taking Laplace of first two constraint of (3.2) we get

17



v(0,q) =0
& >~ (33)

ov(p.0) _
ot J

Taking Double Laplace Transformation of both sides of (8.1), we get

P2V(p, ) — PV(0,q) —V, (0,a) —a>Vv(p,q) +av(p,0) +V,(p,0) = O

(8.4)
Using (3.3), (3.4) becomes
(P ~g*)V(p.q) =¥, (0.9)~qv(p,0)
= v(p,q) = ‘3(833 pzq_qz v(p,0) (3.5)
Let Vx(0,0) = F(q) &Vv(p,0) =G(q) . (3.6)

By using (3.6) and Convolution theorem and Taking Inverse Laplace transform of t-variable
as

LHv(p, )} =v(x,Q) = ;)smh(qx) jG(a)smh(q(x aNde  (37)

Putting X = 7T in (3.7) becomes

F@) _ 1 1 T ] _ 3.8
g = gsinhias Sinh@D !G(a)smh(q(yz a))da (3-8)

Using (3.8), (8.7) becomes

- sinh(gx)  sinh(gx) ¢ . f )
V(X,q) = TSInh(as) + Snhiar) ! G(a)sinh(q(r - a))de — ! G(a)sinh(q(x - «))da

(8.9)

Since by using usual inverse transform of (8.9) does not appear in single Laplace Transform
tables, then this inversion will be effected by the evaluation of the actual integral.

Accordingly,
1 tq =
v(Xx,t) = —_f e“v(x,q)dq (3.10)
2771 7B
where Br is Bromwich contour in the plane of integration.

18



Now the poles of expression et V(X,q) are simple occurring at g = O and q= xni.

Cauchy’s residue theorem can be applied

vix,t)= > e“v(x,q) (3.11)

Residue

At CI =0 the residue is

X

p (3.12)

At = ni the residue is

ien,t sinh(nix)

- (1)’ [——( 1" jG(a)smh(m a)da+je(a)smh(m(x a))da:| (3.18)

At 4 = —ni the residue is

Z“’: it sinh(nix)

i (=) { -(=D" IG(a)Slnh(nl+a)da+IG(a)smh(n|(x a))da} (3.14)

Summing residue from (3.12), (8.13) & (3.14)  gives

v(x,t)=%JriZSi;?_(:)if)sin(nt){%—(—1)”iJX'G(a)sinh(ni—a)da+iTG(a)sinh(ni(x—a))da} (3.15)

. . .. . X .
Since in terms of sine series — can be written as
V2

% = g%(—l)”“sin(nx) (3.16)

Using (3.16), (3. 15) becomes

—( 1)"sin(nx) = ((:)'X) (t){——( -1)" |IG(a)S|nh(n| a)da+|IG(a)3|nh(n|(x a))da} (8.17)

Putting 1 =1;in (3.15) and using constraint (3.2) we get

v(x,t)=0=21+ ZZSmh(n)'X)sm(nt){ (—1)"ije(a)sinh(ni—a)da+ije(a)sinh(ni(x—a))da} (3.18)
7 0

19



Using (3.16), (3.18) becomes

sin(nx)
nsinh(nix)sin(nt,)

%—(—1)”iJX'G(a)sinh(ni—a)da+iTG(a)sinh(ni(x—a))da = (.19)

Substituting (8.19) in (8.15) gives the solution

_ X 2 D sin(nt) sin(nx)
vt = z ; nsin(nt,)

20



CHAPTER 4

THE INTEGRO-DIFFERENTIAL EQUATION
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4.1 Integro-differential equation [[7 & 87:

In mathematical modelling, the application of integro-differential equation plays a vital role,
in various fields like as: biological occurrences, physical sciences and engineering sciences,
in which it is very essential to take into account the consequence of real world problems.

Integro-differential equation gives a greater chance to get success for Varity of problems by
increasing the frequency in the literature and in many other scripts on application of higher
applied mathematics.

The propriety of the result and the essentiality straightforwardness of the construction of
the subject, join to make the integro-differential equation reaches to a much effective value
for several application.

Volterra has introduced integro-difterential equation on combining integral and differential
equation. It has wide applications in science and engineering. The main properties of
Intergro-difterential equations are

(1) Stability and (i) boundedness of the solution.

4.2 Use of double Laplace transform in integro-differential equation:

Q. Find the solution of

t
z, — 7%z, — 7, = me " ' cos(zX) —te " ' sin(zX) + I e ™ ©Nz(x,y) dy
0

X

with Conditions
z(x,0) =sin(7x) & z,(x,0) = —z% " sin (7x);
z(0,t) =0;

Solution:

Taking Double Laplace Transform in both side of the problem, we get

pz(p,s)—2(0,3) - 72s2(p,s) + 72 2(p,0) —s?2(p,s) +52(p, 0) + ¢(p, 0)

=Lty P T
s+7° 7 s+x? pP+x?t (s+7%)? pP+nt
= = 7 = ST 7’
= pz(p,s)-0-7°52(p,8) ~———-S"2(P.S) + 5~
p*+x P+ p -+
= V4 p 1 Vid
= z(p,s) + —
S+’ (P.S) s+’ pP+x’ (s+x°) pP4n’

22



= p—ﬂ'ZS—SZ— 1 2 ;(pys):_ 2872. 2+ 27z.p2 2 - 2 Zﬂ. 2 2
i S+7° | p +7° (S+x)p +7°) (S+x°)(p°+7)
— - 1
=|p-n’s—s° - z(p,s) = i { -s(s+7%) - }
_p i s+7° (P:5) (s+7°)(p*+7%) prster) s+7°
T

= 2P = A D)

Now taking Inverse Laplace Transform w.r.t “t”, we get,
2¢ T
T
again applying inverse Laplace transform w.r.t "p",we obtain

z(p,t)=e"

z(x,t) =e " tsin(xzx) .

23



Concluding Remarks:

In this dissertation we have discussed few examples and its applications by using Double
Laplace Transformation. Also in fluid dynamics and elastic-dynamics that are deals with
integral and partial differential equations can also be evaluate with the benefit of double
Laplace transform.
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