

**ANALYTICAL INVESTIGATION AND OPERATIONAL RULE FOR  
DOUBLE LAPLACE TRANSFORM**

**DISSERTATION SUBMITTED IN  
PARTIAL FULLFILMENT OF REQUIREMENT FOR THE AWARD  
OF THE DEGREE OF**

**MASTER OF SCIENCE  
IN  
MATHEMATICS & COMPUTING**

**BY  
SUDEEP MONDAL (ADMISSION NO: 17MS000436)  
&  
BIDHAN BHUNIA (ADMISSION NO: 17MS000448)**

**UNDER THE GUIDENCE OF**

**Dr. AKHILESH PRASAD**



**DEPARTMENT OF APPLIED MATHEMATICS  
INDIAN INSTITUTE OF TECHNOLOGY(ISM) DHANBAD  
DHANBAD-826004  
MAY, 2019**

## DECLARATION

The Dissertation titled "**Analytical Investigation And Operational Rule For Double Laplace Transform**" is a presentation of our original research work and is not copied or reproduced or imitated from any other person's published or unpublished work. Wherever contributions of others are involved, every effort is made to indicate this clearly, with due reference to the literature, and acknowledgement of collaborative research and discussions, as may be applicable. Every effort is made to give proper citation to the published/unpublished work of others, if it is referred to in the Dissertation.

To eliminate the scope of academic misconduct and plagiarism, We declare that we have read and understood the UGC (Promotion of Academic Integrity and Prevention of Plagiarism in Higher Educational Institutions) Regulations, 2018. These Regulations have been notified in the Official Gazette of India on 31<sup>st</sup> July, 2018.

We confirm that this Dissertation has been checked with the online plagiarism detector tool Turnitin (<http://www.turnitin.com>) provided by IIT (ISM) Dhanbad and a copy of the summary report/report, showing Similarities in content and its potential source (if any), generated online through Turnitin is enclosed at the end of the Dissertation. We hereby declare that the Dissertation shows less than 10% similarity as per the report generated by Turnitin and meets the standards as per MHRD/UGC Regulations and rules of the Institute regarding plagiarism.

We further state that no part of the Dissertation and its data will be published without the consent of my guide. We also confirm that this Dissertation work, carried out under the guidance of Dr. Akhilesh Prasad, Associate Professor, Department of Applied Mathematics, has not been previously submitted for assessment for the purpose of award of a Degree either at IIT (ISM) Dhanbad or elsewhere to the best of my knowledge and belief.

Sudeep Mondal.

**Sudeep Mondal**

M.Sc. (Mathematics & Computing)

Applied Mathematics, IIT(ISM) Dhanbad

Admission No.: 17MS000436

Bidhan Bhunia

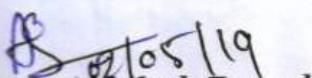
**Bidhan Bhunia**

M.Sc. (Mathematics & Computing)

Applied Mathematics, IIT(ISM) Dhanbad

Admission No.: 17MS000448

**Forwarded By**



**Dr. Akhilesh Prasad**

(Associate Professor)

Department of Applied Mathematics

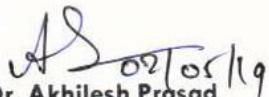


**भारतीय प्रौद्योगिकी संस्थान(भारतीय खनि विद्यापीठ) धनबाद**  
**INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES), DHANBAD**  
**अनुप्रयुक्त गणित विभाग, DEPARTMENT OF APPLIED MATHEMATICS**  
धनबाद, झारखण्ड, भारत, पिन-826004  
DHANBAD, JHARKHAND, INDIA, PIN-826004  
(An Autonomous Institute under Ministry of HRD, Govt. of India)

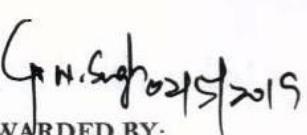
**CERTIFICATE**

This is to certify that **Mr. Sudeep Mondal (Adm. No. 17MS000436)** and **Mr. Bidhan Bhunia (Adm. No. 17MS000448)** students of M.Sc. (Mathematics & Computing), Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad have worked under my guidance and completed their Dissertation entitled "**Analytical Investigation And Operational Rule For Double Laplace Transform**" in partial fulfilment of the requirement for award of degree of M.Sc. in Applied Mathematics from Indian Institute of Technology (Indian School of Mines), Dhanbad.

This work has not been submitted for any other degree, award, or distinction elsewhere to the best of my knowledge and belief. They are solely responsible for the technical data and information provided in this work.

  
10/10/19

**Dr. Akhilesh Prasad**  
Associate Professor and Guide  
Department of Applied Mathematics  
Indian Institute of Technology  
(Indian School of Mines), Dhanbad

  
FORWARDED BY:

**Associate Professor**  
Department of Applied Mathematics  
Indian Institute of Technology (ISM)  
Dhanbad-826004 Jharkhand (India)

**Head of the Department,**  
Department of Applied Mathematics  
Indian Institute of Technology  
(Indian School of Mines), Dhanbad

**Head of the Department**  
Department of Applied Mathematics  
Indian Institute of Technology (ISM)  
Dhanbad-826004 Jharkhand (India)

## **ACKNOWLEDGEMENT**

The success of this dissertation would not have been possible without the help and guidance of a dedicated group of people. Thus, as a token of appreciation for their efforts in making this dissertation a success, we would like to express our sincere acknowledgement to their contributions.

It gives us enormous pleasure to express our deep sense of gratitude and indebtedness to our respected supervisor and advisor, **Dr. Akhilesh Prasad, Associate Professor, Department of Applied Mathematics, Indian Institute of Technology (ISM), Dhanbad**, for his valuable guidance, encouragement and cooperation that has inspired us a lot. His continuous support and suggestions made the completion of this dissertation possible. The knowledge we gained from him will enlighten us throughout our life.

We extend our thanks to Prof. Garib Nath Singh, Head of the Department of Applied Mathematics and Dr. Abhay Kumar Singh, the course coordinator of 2-year M.Sc. in Mathematics and Computing, IIT(ISM), Dhanbad for providing me all necessary facilities for completion of the project work.

We would like to thank all respected faculty members and staffs of the Department of Applied Mathematics for their valuable help and constant cooperation throughout the course of study.

Sudeep Mondal.

SUDEEP MONDAL  
(Adm No. 17MS000436)

Bidhan Bhunia

BIDHAN BHUNIA  
(Adm No.17MS000448)

Date: 02/05/2019

Place: Dhanbad

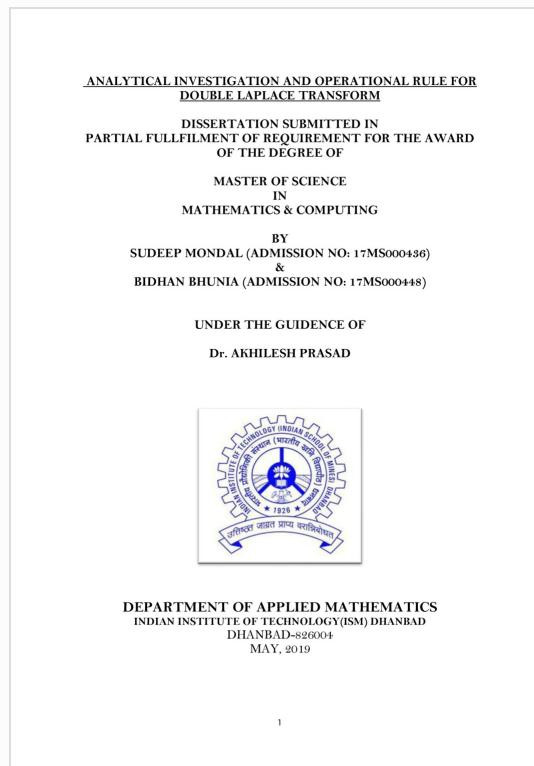


## Digital Receipt

This receipt acknowledges that **Turnitin** received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

Submission author: Sudeep Mandal And Bidhan Bhunia  
Assignment title: Thesis  
Submission title: ANALYTICAL INVESTIGATION AND...  
File name: ESTIGATION\_AND\_OPERATIONAL..  
File size: 475.45K  
Page count: 24  
Word count: 3,790  
Character count: 16,611  
Submission date: 01-May-2019 07:38PM (UTC+0700)  
Submission ID: 1122805957



# CONTENTS

---

## 1. Chapter 1

|                                                            |       |
|------------------------------------------------------------|-------|
| 1.1 Introduction of Double Laplace Transform.....          | 7     |
| 1.2 Definition.....                                        | 7     |
| 1.3 Existence condition for Double Laplace Transform.....  | 7-9   |
| 1.4 Properties of Double Laplace Transform.....            | 10    |
| 1.5 Some Important Result in Double Laplace Transform..... | 11-12 |

## **2. CHAPTER 2**

|                                                                    |    |
|--------------------------------------------------------------------|----|
| 2.1 Telegraphic Equation .....                                     | 14 |
| 2.2 Use of Double Laplace Transform, in Telegraphic Equation ..... | 15 |

## **3. CHAPTER 3**

|                                                             |       |
|-------------------------------------------------------------|-------|
| 3.1 Wave Equation.....                                      | 17    |
| 3.2 Use of Double Laplace Transform, in Wave Equation ..... | 18-20 |

## **4. CHAPTER 4**

|                                                                            |       |
|----------------------------------------------------------------------------|-------|
| 4.1 Integro-Differential Equation.....                                     | 22    |
| 4.2 Use of Double Laplace Transform in Integro-Differential Equations..... | 22-23 |

## **CHAPTER-1**

### **DOUBLE LAPLACE TRANSFORM**

### 1.1 Introduction:

We are familiar with the Laplace Transform of function one variable, its properties application. But there is almost nothing about the double Laplace Transform, its properties & applications.

Double Laplace Transform is the most powerful methodology to solve partial differential equations. It is very useful for solving Telegraphic, Integro-Differential & Wave Equations in many branches of Applied Mathematics as well as Engineering.

### 1.2 Definition:

The double Laplace transform has been defined by Estrin and Higgins in 1951 [1] as:

$$\bar{\bar{g}}(r,s) = L_t L_x [g(x,t)] = \int_0^\infty e^{-st} \int_0^\infty e^{-px} g(x,t) dx dt = L_x L_t [g(x,t)] \dots (1), \quad r, s \in \mathbb{C},$$

Where  $g(x,t)$  is the bivariate function of  $(x,t) \in [0,\infty) \times [0,\infty)$ . Provided the improper integral converges.

### Definition of Inverse Double Laplace Transform [1]:

Inverse double Laplace transform with respect to 'r' of  $g(x,t)$  is given by

$$L_x^{-1}[\bar{\bar{g}}(r,s)] = \frac{1}{2\pi i} \int_{Br} e^{xp} \bar{\bar{g}}(r,s) dr \quad (1.1)$$

This inversion gives rise the single transformed function  $\bar{g}(x,s)$ . Then second inversion w.r.t "s" gives the required function  $g(x,t)$

$$L_t^{-1}[\bar{g}(x,s)] = \frac{1}{2\pi i} \int_{Br} e^{st} \bar{g}(x,s) ds \quad (1.2)$$

Combining both of the successive inversions (2) and (3) yields,

$$L_t^{-1} L_x^{-1}[\bar{\bar{g}}(r,s)] = \frac{1}{2\pi i} \int_{Br} e^{ts} \frac{1}{2\pi i} \int_{Br} e^{xp} \bar{\bar{g}}(r,s) dp ds = L_x^{-1} L_t^{-1}[\bar{\bar{g}}(r,s)]$$

### 1.3 Existence Condition For Double Laplace Transform [2]:

Let us assume that a function  $g(x,t)$  is defined on  $[0,\infty) \times [0,\infty)$  which is continuous and as well as in exponential order.

i.e., for some  $a, b \in R$ .

Consider  $\sup_{x>0, t>0} \left[ \frac{|g(x,t)|}{e^{ax+bt}} \right] < \infty$ .

In this case, the double Laplace transform of  $g(x,t)$

$$L_t L_x \{g(x, t)\} = \bar{g}(r, s) = \int_0^\infty e^{-st} \int_0^\infty e^{-rx} g(x, t) dx dt$$

Holds  $\forall r > a \ \& \ s > b$  and is infinitely differentiable w.r.t  $r > a \ \& \ s > b$ .

Study of these functions are supposed to be of exponential order.

### Examples:

(1) Suppose  $h(x, t) = 1$  for  $x > 0, t > 0$ , then

$$L_t[h(x, t)] = \frac{1}{s} = \bar{h}(x, s)$$

$$L_x[\bar{h}(x, s)] = \frac{1}{rs} = \bar{\bar{h}}(r, s)$$

$$\Rightarrow L_x L_t[1] = \frac{1}{rs}.$$

(2) Suppose  $h(x, t) = e^{(ax+bt)}$  for all  $x, t > 0$ , then

$$L_t[h(x, t)] = \bar{h}(x, s) = e^{ax} \frac{1}{s-b}$$

$$L_x[\bar{h}(x, s)] = \bar{\bar{h}}(r, s) = \frac{1}{(r-a)(s-b)}$$

$$\Rightarrow L_x L_t[e^{ax+bt}] = \frac{1}{(r-a)(s-b)}.$$

(3) Suppose  $h(x, t) = e^{i(ax+bt)}$  for all  $x, t > 0$ , then

$$L_t[h(x, t)] = \bar{h}(x, s) = e^{iax} \frac{1}{s-ib}$$

$$L_x[\bar{h}(x, s)] = \bar{\bar{h}}(r, s) = \frac{1}{(r-ia)(s-ib)} = \frac{(rs-ab)+i(as+br)}{(r^2+a^2)(s^2+b^2)}$$

$$\Rightarrow L_x L_t[e^{i(ax+bt)}] = \bar{\bar{h}}(r, s) = \frac{(rs-ab)+i(as+br)}{(r^2+a^2)(s^2+b^2)}.$$

So,

$$L_x L_t[\cos(ax+bt)] = \frac{(rs-ab)}{(r^2+a^2)(s^2+b^2)}$$

$$L_x L_t[\sin(ax+bt)] = \frac{(as+br)}{(r^2+a^2)(s^2+b^2)}.$$

Some Suitable Double Laplace Transforms are given in tabular form

| $g(x, t)$                                                                               | $L_x L_t [g(x, t)] = \bar{\bar{g}}(p, s)$                                                                                                                           |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                       | $\frac{1}{ps}$                                                                                                                                                      |
| $e^{(ax+bt)}$                                                                           | $\frac{1}{(p-a)(s-b)}$                                                                                                                                              |
| $\cos(ax+bt)$                                                                           | $\frac{(ps-ab)}{(p^2+a^2)(s^2+b^2)}$                                                                                                                                |
| $\sin(ax+bt)$                                                                           | $\frac{(as+bp)}{(p^2+a^2)(s^2+b^2)}$                                                                                                                                |
| $\cosh(ax+bt)$                                                                          | $\frac{1}{2} \left[ \left( \frac{1}{p-a} \right) \left( \frac{1}{s-b} \right) + \left( \frac{1}{p+a} \right) \left( \frac{1}{s+b} \right) \right]$                  |
| $\sinh(ax+bt)$                                                                          | $\frac{1}{2} \left[ \left( \frac{1}{p-a} \right) \left( \frac{1}{s-b} \right) - \left( \frac{1}{p+a} \right) \left( \frac{1}{s+b} \right) \right]$                  |
| $e^{-ax-bt} f(x, t)$                                                                    | $\bar{\bar{f}}(p+a, s+b)$                                                                                                                                           |
| $x^m t^n$                                                                               | (i) $\frac{m! n!}{p^{m+1} s^{n+1}}$ ; where $m, n \in \mathbb{Z}^+$<br>(ii) $\frac{\Gamma(m+1)}{p^{m+1}} \cdot \frac{\Gamma(n+1)}{s^{n+1}}$ ; where $m > 1, n > -1$ |
| $\frac{1}{\sqrt{xt}}$                                                                   | $\frac{\pi}{\sqrt{ps}}$                                                                                                                                             |
| $J_0(a\sqrt{xt})$                                                                       | $\frac{4}{(4ps + a^2)}$                                                                                                                                             |
| (i) $erf\left(\frac{x}{2\sqrt{t}}\right)$<br>(ii) $erf\left(\frac{t}{2\sqrt{x}}\right)$ | (i) $\left(\frac{1}{p\sqrt{s}}\right) \frac{1}{(p + \sqrt{s})}$<br>(ii) $\left(\frac{1}{s\sqrt{p}}\right) \frac{1}{(s + \sqrt{p})}$                                 |

#### 1.4 Basic Properties of Double Laplace Transforms [3]

$$(1) \ L_x L_t [e^{-ax-bt} f(x, t)] = \bar{\bar{f}}(r+a, s+b)$$

$$(2) \ L_x L_t [f(ax)g(bt)] = \frac{1}{ab} \bar{f}\left(\frac{r}{a}\right) \bar{g}\left(\frac{s}{b}\right), a > 0, b > 0$$

$$(3) \ L_x L_t [f(x)] = \frac{1}{s} \bar{f}(r) ; L_x L_t [g(t)] = \frac{1}{p} \bar{g}(s)$$

$$(4) \ L_x L_t [f(x+t)] = \frac{1}{r-s} [\bar{\bar{f}}(r) - \bar{\bar{f}}(s)]$$

$$(5) \ L_x L_t [f(x-t)] = \frac{1}{r+s} [\bar{\bar{f}}(r) + \bar{\bar{f}}(s)], \text{ when } f \text{ is an even function}$$

$$= \frac{1}{r+s} [\bar{\bar{f}}(r) - \bar{\bar{f}}(s)], \text{ when } f \text{ is a odd function}$$

$$(6) \ L_x L_t [f(x)H(x-t)] = \frac{1}{s} [\bar{\bar{f}}(r) - \bar{\bar{f}}(r+s)]$$

$$(7) \ L_x L_t [f(x)H(t-x)] = \frac{1}{s} [\bar{\bar{f}}(r+s)]$$

$$(8) \ L_x L_t [f(x)H(x+t)] = \frac{1}{s} [\bar{\bar{f}}(r)]$$

$$(9) \ L_x L_t [H(x-t)] = \frac{1}{r(r+s)}$$

$$(10) \ L_x L_t \left[ \frac{\partial u}{\partial x} \right] = p \bar{u}(r, s) - \bar{u}(0, s)$$

$$(11) \ L_x L_t \left[ \frac{\partial u}{\partial t} \right] = s \bar{u}(r, s) - \bar{u}(p, 0)$$

$$(12) \ L_x L_t \left[ \frac{\partial^2 u}{\partial x^2} \right] = r^2 \bar{u}(r, s) - r \bar{u}(0, s) - \bar{u}_x(0, s)$$

$$(13) \ L_x L_t \left[ \frac{\partial^2 u}{\partial t^2} \right] = s^2 \bar{u}(r, s) - s \bar{u}(r, 0) - \bar{u}_t(r, 0)$$

$$(14) \ L_x L_t \left[ \frac{\partial^2 u}{\partial x \partial t} \right] = r s \bar{u}(p, s) - s \bar{u}(0, s) - r \bar{u}(r, 0) + u(0, 0)$$

.

### 1.5 Some important results: [4 & 9]

Statement (1):

Suppose  $\varphi(x, t)$  is a bivariate continuous function in the positive region of  $R = \{(a, b) : 0 < x < \infty, 0 < t < \infty\}$ . If the integral

$$\int_0^\infty \int_0^\infty e^{-px-st} \varphi(x, t) dx dt$$

Converges at  $p = p_0, s = s_0$  then integral converges for  $p > p_0, s > s_0$ .

Statement (2):

If  $L_x L_t[g(x, t)] = \bar{\bar{g}}(p, s)$  and

$$f(x, t) = \int_0^x \int_0^t g(u, v) dv du, \quad (1.3)$$

then

$$L_x L_t \left\{ \int_0^x \int_0^t g(u, v) dv du \right\} = \frac{\bar{\bar{g}}(p, s)}{ps}. \quad (1.4)$$

**Proof:**

Denote  $h(x, t) = \int_0^t g(x, v) dv$ . By fundamental theorem of calculus

$$h_t(x, t) = g(x, t) \quad (1.5)$$

And

$$h(x, 0) = 0. \quad (1.6)$$

Invoking double Laplace transform in (1.5), we obtain

$$s \bar{\bar{h}}(p, s) - \bar{h}(p, 0) = \bar{\bar{g}}(p, s) \quad (1.7)$$

And Single Laplace Transform of equation (1.6)

$$\bar{h}(p, 0) = 0$$

Then equation (1.7) becomes,

$$\bar{\bar{h}}(p, s) = \frac{\bar{\bar{g}}(p, s)}{s} . \quad (1.8)$$

From (1.3)

$$f(x, t) = \int_0^x h(u, t) du$$

$$f_x(x, t) = h(x, t) \text{ And } f(0, t) = 0,$$

$$p \bar{\bar{f}}(p, s) - \bar{f}(0, s) = \bar{\bar{h}}(p, s)$$

Now using (1.8) and (1.3), we get

$$L_x L_t \{g(u, v) dv du\} = \frac{\bar{\bar{g}}(p, s)}{ps} .$$

## **CHAPTER 2**

### **THE TELEGRAPHIC EQUATION**

## 2.1 The Telegraph Equation [5]:

Model of extremely small piece telegraph wire is taking as an electrical circuit, which obey the resistor of resistance  $Rdx$  and an inductance of coil is  $Ldx$ . Using the current flow through the wire of amount  $i(x,t)$  and voltage through resister is  $iRdx$ . When that passing in-between the coil is  $iLdx$ . At any instance “t” with the position “x” is denoted by  $h(x,t)$ . So the change of voltage between two ends of a piece of wire is

$$dh = (iR - itL)dx$$

Let us suppose that current  $i(x,t)$  can be emitted from the wire to ground, either by resistors with conductance  $Gdx$  or by a capacitor with capacitance  $Cdx$ . The quantity that emitted from the resistor is  $hGdx$ . As the charge on the capacitor is  $q = hCdx$ , the quantity that emitted through the capacitor is  $u_t Cdx$ .

Finally,

$$di = -hGdx - h_t Cdx.$$

On dividing both sides in the last expression by  $dx$  and assuming the limit  $dx \rightarrow 0$ , the required differential equations are as follows

$$h_x = Ri + Li_t = 0 \dots \dots \dots (k1)$$

$$Ch_t + Gh + i_x = 0 \dots \dots \dots (k2)$$

Solving  $\frac{\partial}{\partial t}(k2)$  for

$$i_{xt} = -Ch_{tt} - Gh_t$$

And substituting the result into  $\frac{\partial}{\partial t}(k1)$  gives

$$h_{xx} + Ri_x + L(-Ch_{tt} - Gh_t) = 0$$

$$\Rightarrow h_{xx} + R(-Ch_t - Gh) + L(-ch_{tt} - Gh_t) = 0$$

Now, the telegraph equation is rewritten as

$$h_{tt} + (\alpha + \beta)h_t + \alpha\beta h = c^2 h_{xx} ,$$

where  $c^2 = \frac{1}{LC}$ ,  $\alpha = \frac{G}{C}$  &  $\beta = \frac{R}{L}$ ;

## 2.2 Use of Double Laplace Transform in Telegraphic Equation:

**Q.** Find the solution of  $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial t^2} + 2 \frac{\partial z}{\partial t} + z$  (2.1)

with the conditions

$$\left. \begin{array}{l} z(x,0) = e^x; z_t(x,0) = -2e^x \\ z(0,t) = e^{-2t}; z_x(0,t) = e^{-2t} \end{array} \right\} (2.2)$$

### Solution:

Invoking double Laplace transform in both sides of the PDE (2.1), we get,

$$\begin{aligned} r^2 \bar{z}(r,s) - r \bar{z}(0,s) - \bar{z}_x(0,s) \\ = s^2 \bar{z}(r,s) - s \bar{z}(r,0) - \bar{z}_t(0,s) + 2s \bar{z}(r,s) - 2 \bar{z}(r,0) + \bar{z}(r,s) \end{aligned}$$

Applying single Laplace transform on system (2.2)

$$\begin{aligned} \bar{z}(r,0) &= \frac{1}{(r-1)}, \quad \bar{z}_t(r,0) = -\frac{2}{(r-1)} \\ \& \bar{z}(0,s) = \frac{1}{(s+2)}, \quad \bar{z}_x(0,s) = \frac{1}{(s+2)} \end{aligned} .$$

Then,

$$\begin{aligned} \Rightarrow r^2 \bar{z}(r,s) - \frac{r}{s+2} - \frac{1}{s+2} &= s^2 \bar{z}(r,s) - \frac{s}{r-1} + \frac{2}{r-1} + 2s \bar{z}(r,s) - \frac{2}{r-1} + \bar{z}(r,s) \\ \Rightarrow \bar{z}(r,s)[r^2 - s^2 - 2s - 1] &= \frac{r}{s+2} + \frac{1}{s+2} - \frac{s}{r-1} \\ &= \frac{r^2 - s^2 - 2s - 1}{(s+2)(r-1)} \\ \Rightarrow \bar{z}(r,s) &= \frac{1}{(s+2)(r-1)} (2.3) \end{aligned}$$

Now, by taking inverse Laplace transform of (3) with respect to "s"

$$\Rightarrow \bar{z}(r,t) = \frac{e^{-2t}}{(r-1)} (2.4)$$

Again, applying inverse Laplace transform of (4) w.r.t "r",

$$\Rightarrow z(x,t) = e^{-2t} \cdot e^x = e^{x-2t}$$

## **CHAPTER 3**

### **THE WAVE EQUATION**

### 3.1 The wave equation [6 & 10]:

There has an impotency of a typical homogeneous type well-known hyperbolic differential equation, which is known as wave equation. Here uses the time variable "t" and one or more special variable  $x_1, x_2, x_3, \dots, x_n$  and a scalar function  $g = g(x_1, x_2, \dots, x_n; t)$ , the model is being made by  $g$ .

Basically  $u$  is the mechanical displacement of wave. The wave equation for  $g$  is

$$\frac{\partial^2 g}{\partial t^2} = c^2 \nabla^2 g,$$

where  $\nabla$  = nabla operator,  $\nabla^2 = \nabla \cdot \nabla$  is the (spatial) Laplacian operator; and  $c$  is a constant.

This kind of differential equation appears in different branches of physics and can be found in many situations such as electro-magnetic wave, transverse vibration string, sound propagation, bar with longitudinal vibration, etc. Solution of such kind of equation is called wave function.

### 3.2 Use of Double Laplace Transform In Wave Equation:

Q. Find out the solution of the following wave equation,

$$\frac{\partial^2 v(x, t)}{\partial x^2} = \frac{\partial^2 v(x, t)}{\partial t^2} \quad (3.1)$$

$$\left. \begin{array}{l} v(0, t) = 0 \\ \frac{\partial v(x, 0)}{\partial t} = 0 \\ v(\pi, t) = 1 \\ v(x, t_0) = 0 \end{array} \right\} \quad (3.2)$$

### Solution:

Taking Laplace of first two constraint of (3.2) we get

$$\left. \begin{array}{l} \bar{v}(0, q) = 0 \\ \& \\ \frac{\partial \bar{v}(p, 0)}{\partial t} = 0 \end{array} \right\} \quad (3.3)$$

Taking Double Laplace Transformation of both sides of (3.1), we get

$$p^2 \bar{v}(p, q) - p \bar{v}(0, q) - \bar{v}_x(0, q) - q^2 \bar{v}(p, q) + q \bar{v}(p, 0) + \bar{v}_t(p, 0) = 0 \quad (3.4)$$

Using (3.3), (3.4) becomes

$$\begin{aligned} (p^2 - q^2) \bar{v}(p, q) &= \bar{v}_x(0, q) - q \bar{v}(p, 0) \\ \Rightarrow \bar{v}(p, q) &= \frac{\bar{v}_x(0, q)}{p^2 - q^2} - \frac{q}{p^2 - q^2} \bar{v}(p, 0) \end{aligned} \quad (3.5)$$

$$\text{Let } \bar{v}_x(0, q) = \bar{F}(q) \& \bar{v}(p, 0) = \bar{G}(q) \quad (3.6)$$

By using (3.6) and Convolution theorem and Taking Inverse Laplace transform of t-variable as

$$L_t^{-1}\{\bar{v}(p, q)\} = \bar{v}(x, q) = \frac{\bar{F}(q)}{q} \sinh(qx) - \int_0^x G(\alpha) \sinh(q(x - \alpha)) d\alpha \quad (3.7)$$

Putting  $x = \pi$  in (3.7) becomes

$$\frac{\bar{F}(q)}{q} = \frac{1}{q \sinh(q\pi)} + \frac{1}{\sinh(q\pi)} \int_0^\pi G(\alpha) \sinh(q(\pi - \alpha)) d\alpha \quad (3.8)$$

Using (3.8), (3.7) becomes

$$\begin{aligned} \bar{v}(x, q) &= \frac{\sinh(qx)}{q \sinh(q\pi)} + \frac{\sinh(qx)}{\sinh(q\pi)} \int_0^\pi G(\alpha) \sinh(q(\pi - \alpha)) d\alpha - \int_0^x G(\alpha) \sinh(q(x - \alpha)) d\alpha \end{aligned} \quad (3.9)$$

Since by using usual inverse transform of (3.9) does not appear in single Laplace Transform tables, then this inversion will be effected by the evaluation of the actual integral. Accordingly,

$$v(x, t) = \frac{1}{2\pi i} \int_{B_r} e^{tq} \bar{v}(x, q) dq \quad (3.10)$$

where Br is Bromwich contour in the plane of integration.

Now the poles of expression  $e^{tq}\bar{v}(x, q)$  are simple occurring at  $q = \mathbf{0}$  and  $q = \pm ni$ .

Cauchy's residue theorem can be applied

$$v(x, t) = \sum_{\text{Residue}} e^{tq} \bar{v}(x, q) \quad (3.11)$$

At  $q = \mathbf{0}$  the residue is

$$\frac{x}{\pi} \quad (3.12)$$

At  $q = ni$  the residue is

$$\sum_{n=1}^{\infty} e^{nit} \frac{\sinh(nix)}{\pi(-1)^n} \left[ \frac{1}{ni} - (-1)^n \int_0^x G(\alpha) \sinh(ni - \alpha) d\alpha + \int_0^{\pi} G(\alpha) \sinh(ni(x - \alpha)) d\alpha \right] \quad (3.13)$$

At  $q = -ni$  the residue is

$$\sum_{n=1}^{\infty} -e^{-nit} \frac{\sinh(nix)}{\pi(-1)^n} \left[ \frac{1}{ni} - (-1)^n \int_0^x G(\alpha) \sinh(ni + \alpha) d\alpha + \int_0^{\pi} G(\alpha) \sinh(ni(x - \alpha)) d\alpha \right] \quad (3.14)$$

Summing residue from (3.12), (3.13) & (3.14) gives

$$v(x, t) = \frac{x}{\pi} + \sum_{n=1}^{\infty} 2 \frac{\sinh(nix)}{\pi(-1)^n} \sin(nt) \left[ \frac{1}{n} - (-1)^n i \int_0^x G(\alpha) \sinh(ni - \alpha) d\alpha + i \int_0^{\pi} G(\alpha) \sinh(ni(x - \alpha)) d\alpha \right] \quad (3.15)$$

Since in terms of sine series  $\frac{x}{\pi}$  can be written as

$$\frac{x}{\pi} = \sum_{n=1}^{\infty} \frac{2}{n\pi} (-1)^{n+1} \sin(nx) \quad (3.16)$$

Using (3.16), (3.15) becomes

$$\frac{2}{n\pi} (-1)^n \sin(nx) = \frac{\sinh(nix)}{\pi(-1)^n} \sin(nt_0) \left[ \frac{1}{n} - (-1)^n i \int_0^x G(\alpha) \sinh(ni - \alpha) d\alpha + i \int_0^{\pi} G(\alpha) \sinh(ni(x - \alpha)) d\alpha \right] \quad (3.17)$$

Putting  $t = t_0$  in (3.15) and using constraint (3.2) we get

$$v(x, t_0) = 0 = \frac{x}{\pi} + \sum_{n=1}^{\infty} 2 \frac{\sinh(nix)}{\pi(-1)^n} \sin(nt_0) \left[ \frac{1}{n} - (-1)^n i \int_0^x G(\alpha) \sinh(ni - \alpha) d\alpha + i \int_0^{\pi} G(\alpha) \sinh(ni(x - \alpha)) d\alpha \right] \quad (3.18)$$

Using (3.16), (3.18) becomes

$$\left[ \frac{1}{n} - (-1)^n i \int_0^x G(\alpha) \sinh(ni - \alpha) d\alpha + i \int_0^\pi G(\alpha) \sinh(ni(x - \alpha)) d\alpha \right] = \frac{\sin(nx)}{n \sinh(nix) \sin(nt_0)} \quad (3.19)$$

Substituting (3.19) in (3.15) gives the solution

$$v(x, t) = \frac{x}{\pi} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n \sin(nt) \sin(nx)}{n \sin(nt_0)}$$

## **CHAPTER 4**

### **THE INTEGRO-DIFFERENTIAL EQUATION**

#### **4.1 Integro-differential equation [7 & 8]:**

In mathematical modelling, the application of integro-differential equation plays a vital role, in various fields like as: biological occurrences, physical sciences and engineering sciences, in which it is very essential to take into account the consequence of real world problems.

Integro-differential equation gives a greater chance to get success for Variety of problems by increasing the frequency in the literature and in many other scripts on application of higher applied mathematics.

The propriety of the result and the essentiality straightforwardness of the construction of the subject, join to make the integro-differential equation reaches to a much effective value for several application.

Volterra has introduced integro-differential equation on combining integral and differential equation. It has wide applications in science and engineering. The main properties of Intergro-differential equations are

(i) Stability and (ii) boundedness of the solution.

#### **4.2 Use of double Laplace transform in integro-differential equation:**

**Q.** Find the solution of

$$z_x - \pi^2 z_t - z_{tt} = \pi e^{-\pi^2 t} \cos(\pi x) - t e^{-\pi^2 t} \sin(\pi x) + \int_0^t e^{-\pi^2(t-y)} z(x, y) dy$$

with Conditions

$$\begin{aligned} z(x, 0) &= \sin(\pi x) \quad \& z_t(x, 0) = -\pi^2 e^{-\pi^2 t} \sin(\pi x); \\ z(0, t) &= 0; \end{aligned}$$

#### **Solution:**

Taking Double Laplace Transform in both side of the problem, we get

$$\begin{aligned} \bar{p} \bar{z}(p, s) - \bar{z}(0, s) - \pi^2 s \bar{z}(p, s) + \pi^2 \bar{z}(p, 0) - s^2 \bar{z}(p, s) + s \bar{z}(p, 0) + \bar{z}_t(p, 0) \\ = \frac{1}{s + \pi^2} \bar{z}(p, s) + \frac{\pi}{s + \pi^2} \frac{p}{p^2 + \pi^2} - \frac{1}{(s + \pi^2)^2} \frac{\pi}{p^2 + \pi^2} \\ \Rightarrow \bar{p} \bar{z}(p, s) - 0 - \pi^2 s \bar{z}(p, s) - \frac{\pi^3}{p^2 + \pi^2} - s^2 \bar{z}(p, s) + \frac{s\pi}{p^2 + \pi^2} - \frac{\pi^3}{p^2 + \pi^2} \\ = \frac{1}{s + \pi^2} \bar{z}(p, s) + \frac{\pi}{s + \pi^2} \frac{p}{p^2 + \pi^2} - \frac{1}{(s + \pi^2)^2} \frac{\pi}{p^2 + \pi^2} \end{aligned}$$

$$\begin{aligned}
&\Rightarrow \left[ p - \pi^2 s - s^2 - \frac{1}{s + \pi^2} \right] \bar{z}(p, s) = -\frac{s\pi}{p^2 + \pi^2} + \frac{\pi p}{(s + \pi^2)(p^2 + \pi^2)} - \frac{\pi}{(s + \pi^2)^2(p^2 + \pi^2)} \\
&\Rightarrow \left[ p - \pi^2 s - s^2 - \frac{1}{s + \pi^2} \right] \bar{z}(p, s) = \frac{\pi}{(s + \pi^2)(p^2 + \pi^2)} \left[ p - s(s + \pi^2) - \frac{1}{s + \pi^2} \right] \\
&\Rightarrow \bar{z}(p, s) = \frac{\pi}{(s + \pi^2)(p^2 + \pi^2)}
\end{aligned}$$

Now taking Inverse Laplace Transform w.r.t "t", we get,

$$\bar{z}(p, t) = e^{-\pi^2 t} \frac{\pi}{p^2 + \pi^2}$$

again applying inverse Laplace transform w.r.t "p", we obtain

$$z(x, t) = e^{-\pi^2 t} \sin(\pi x) .$$

## Concluding Remarks:

In this dissertation we have discussed few examples and its applications by using Double Laplace Transformation. Also in fluid dynamics and elastic-dynamics that are deals with integral and partial differential equations can also be evaluate with the benefit of double Laplace transform.

## Bibliography:

1. T. A. Estrin and T. J. Higgins, The solution of boundary value problems by multiple Laplace transformations, *J. Franklin Inst.*, 252(2), 1951: 153-167.
2. R. R. Dhunde, N. M. Bhondge and P. R. Dhongle, Some remarks on the properties of double Laplace transforms, *Int. J. Appl. Phy. & Math.*, 3( 4), 2013: 293-295.
3. L. Debnath, D. Bhatta: *Integral Transforms and Their Applications*, 3rd edn. CRC Press, Chapman & Hall, Boca Raton (2015).
4. R. R. Dhunde et al., Some Convergence Theorems on Double Laplace Transforms, *Journal of Informatics and Mathematical Sciences*, 6 (1), 2014: 45–54.
5. V. K. Srivastava et al., The telegraph equation and its solution by reduced differential transform method, *Model. Simul. Eng.* Vol. 2013, Article ID 746351, 6 pages.
6. K. Sankara Rao: *Introduction to Partial Differential Equations*, 3rd edn. PHI Learning, (2011).
7. V. Lakshmikantham and M. R. M. Rao, *Theory of Integro-Differential Equations*, Gordon and Breach publishers, (1995).
8. P. Linz, *Analytical and Numerical Methods for Volterra Equation*, Siam Philadelphia ,(1985).
9. L. Debnath, The double Laplace transforms and their properties with applications to functional, integral and partial differential equations, *Int. J. Appl. Comput. Math.*, 2(2), 2016: 223-241.
10. E. Hassan and K. Adem, A note on solutions of wave, Laplace's and heat equations with convolution terms by using a double Laplace transform, *Appl. Math. Lett.*, 21(12),2008: 1324-1329.

# ANALYTICAL INVESTIGATION AND OPERATIONAL RULE FOR DOUBLE LAPLACE TRANSFORM

*by* Sudeep Mandal And Bidhan Bhunia

---

**Submission date:** 01-May-2019 07:38PM (UTC+0700)

**Submission ID:** 1122805957

**File name:** ESTIGATION\_AND\_OPERATIONAL\_RULE\_FOR\_DOUBLE\_LAPLACE\_TRANSFORM.pdf (475.45K)

**Word count:** 3790

**Character count:** 16611

# ANALYTICAL INVESTIGATION AND OPERATIONAL RULE FOR DOUBLE LAPLACE TRANSFORM

## ORIGINALITY REPORT

|                  |                  |              |                |
|------------------|------------------|--------------|----------------|
| 7 %              | 6 %              | 6 %          | %              |
| SIMILARITY INDEX | INTERNET SOURCES | PUBLICATIONS | STUDENT PAPERS |

## PRIMARY SOURCES

|   |                                                                                                                                                                                                                                                                                                     |     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1 | <a href="http://iasj.net">iasj.net</a><br>Internet Source                                                                                                                                                                                                                                           | 1 % |
| 2 | <a href="http://elib.uni-stuttgart.de">elib.uni-stuttgart.de</a><br>Internet Source                                                                                                                                                                                                                 | 1 % |
| 3 | <a href="http://www.beverlyteacher.com">www.beverlyteacher.com</a><br>Internet Source                                                                                                                                                                                                               | 1 % |
| 4 | Sinha, Shriya, Manoj Kumar Mahata, Kaushal Kumar, S.P. Tiwari, and V.K. Rai. "Dualistic temperature sensing in Er <sup>3+</sup> /Yb <sup>3+</sup> doped CaMoO <sub>4</sub> upconversion phosphor", <i>Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy</i> , 2017.<br>Publication | 1 % |
| 5 | <a href="http://classes.cec.wustl.edu">classes.cec.wustl.edu</a><br>Internet Source                                                                                                                                                                                                                 | 1 % |
| 6 | Hassan Eltayeb, Adem Kılıçman. "A note on solutions of wave, Laplace's and heat equations with convolution terms by using a                                                                                                                                                                         | 1 % |

double Laplace transform", Applied  
Mathematics Letters, 2008

Publication

7

[www.iosrjournals.org](http://www.iosrjournals.org)

Internet Source

1 %

8

Ranjit R. Dhunde, G. L. Waghmare. "Solutions  
of Some Linear Fractional Partial Differential  
Equations in Mathematical Physics", Journal of  
the Indian Mathematical Society, 2018

Publication

9

Chang Dae Han. "The effect of radial diffusion  
on the performance of a liquid-liquid  
displacement process", Applied Scientific  
Research, 1970

Publication

10

"Innovations in Soft Computing and Information  
Technology", Springer Nature, 2019

Publication

1 %

11

Adem Kılıçman, Hassan Eltayeb. "Some  
Remarks on the Sumudu and Laplace  
Transforms and Applications to Differential  
Equations", ISRN Applied Mathematics, 2012

Publication

<1 %

12

[en.wikipedia.org](https://en.wikipedia.org)

Internet Source

<1 %

---

Exclude quotes

On

Exclude matches

< 14 words

Exclude bibliography

On