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Abstract

Normalizing flows are an essential alternative to
GAN:Ss for generative modelling, which can be op-
timized directly on the maximum likelihood of the
dataset. They also allow computation of the exact
latent vector corresponding to an image since they
are composed of invertible transformations. How-
ever, the requirement of invertibility of the trans-
formation prevents standard and expressive neural
network models such as CNNs from being directly
used. Emergent convolutions were proposed to con-
struct an invertible 3x3 CNN layer using a pair
of masked CNN layers, making them inefficient.
We study conditions such that 3x3 CNNs are in-
vertible, allowing them to construct expressive nor-
malizing flows. We derive necessary and sufficient
conditions on a padded CNN for it to be invert-
ible. Our conditions for invertibility are simple, can
easily be maintained during the training process.
Since we require only a single CNN layer for ev-
ery effective invertible CNN layer, our approach is
more efficient than emerging convolutions. We also
proposed a new coupling layer for more flexibil-
ity and expressiveness, Quad-coupling. We bench-
mark our approach and show similar performance
results to emergent convolutions while improving
the model’s efficiency. Code available on GitHub}

‘https://github.com/Naagar/
Normalizing_ Flow_3x3_inv

1 INTRODUCTION

The availability of large datasets has resulted in improved
machine learning solutions for more complex problems.
However, supervised datasets are expensive to create. Hence
unsupervised methods like generative models are increas-
ingly worked on. Generative models that have been pro-

posed can be broadly categorized under Likelihood-based
methods and Generative Adversarial Methods. For example,
an optimization algorithm could directly minimize the for-
mer’s negative log-likelihood of the unsupervised examples.
At the same time, in the latter, the loss function itself is mod-
elled as a discriminator network that is trained alternatively.
Hence likelihood-based methods directly optimize the prob-
ability of examples. In contrast, in GANS, the function being
optimized is implicit and hard to reason about.

An essential type of Likelihood-based Generative models
is normalizing flow-based models. Normalizing flow-based
models transform a latent vector usually sampled from a
continuous distribution like the Gaussian by a sequence
of invertible functions to produce the sample. Hence even
though the latent vector distribution is simple, the sample
distribution could be highly complex, provided we are using
an expressive set of invertible transformations. Also, the
invertibility of the model implies that one can find the exact
latent vector corresponding to an example from a dataset.
All other approaches to generative modelling can compute
the latent vector, for example, only approximately.

The ability of a normalizing flow based model to express
complex real-world data distributions depends on the ex-
pressive power of the invertible transformations used. In
supervised models in vision tasks, complex, multilayered
CNNs with different window sizes are used. CNN’s with
larger window size helps in spatial mixing of information
about the images, resulting in expressive features. Glow
used invertible 1x 1 convolutions to build normalizing flow
models [Kingma and Dhariwal| [2018]]. For a 1 x 1 convolu-
tion (if it is invertible), the inverse is also a 1 x 1 convolution.
We show that this approach does not generalize to larger
window sizes. In particular, the inverse of an invertible 3x3
convolution necessarily depends on all the feature vector
dimensions, unlike CNNs, which only require local features.

Emerging convolutions proposed a way of inverting convolu-
tions with large window sizes|Hoogeboom et al.|[2019]. The
inverse is not a convolution and is computed by a linear equa-
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tion system that can efficiently be solved using back sub-
stitution. However, for obtaining an invertible convolution,
they required 2 CNN filters to be applied. Hence for every
effective invertible convolution, they are required to do two
convolutions back to back. We propose a simple approach
using padding of obtaining invertible convolutions, which
only uses a single convolutional filter. Furthermore, we are
able to give a characterization (necessary and sufficient con-
ditions) for the convolutions to be invertible. This allows us
to optimize over the space of invertible convolutions during
training directly. We have compared our method with Emerg-
ing convolution (Hoogeboom et al.|[2019]) and Autoregres-
sive convolution (Germain et al.| [2015])) in Appendix-@]

Main Contributions.

* We give necessary and sufficient conditions for a 3x3
convolution to be invertible by making some modifica-
tions to the padding (see Section[3.1).

* We also propose a more expressive coupling mecha-
nism called Quad-coupling (see Section [3.2).

* We use our characterization and Quad-coupling to train
flow-based models that give samples of similar quality
as previous works while improving upon the run-time
compared to the other invertible 33 convolutions pro-
posed (see Section ).

2 RELATED WORKS

Normalizing flows. A normalizing flow aims to model an
unknown data distribution (Kingma and Dhariwal [2018]],
Durkan et al.|[2019alb]), that is, to be able to sample from
this distribution and estimate the likelihood of an element
for this distribution.

To model the probability density of a random variable z,
a normalizing flow apply an invertible change of variable
x = gp(z) where z is a random variable following a known
distribution for instance z ~ A (0, I;). Then we can get the
probability of x by applying the change of variable formula
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its Jacobian.

where fy denotes the inverse of gy and ‘

The parameters 6 are learned by maximizing the actual
likelihood of the dataset. At the same time, the model is
designed so that the function gy can be inverted and have its
Jacobian computed in a reasonable amount of time.

Glow. RealNVP defines a normalizing flow composed of
a succession of invertible steps (Dinh et al.|[2017]]). Each
of these steps can be decomposed into layers steps. Im-
provements for some of these layers where proposed in later

articles (Kingma and Dhariwal [2018]], Hoogeboom et al.
[2019]).

Actnorm: The actnorm layer performs an affine transforma-
tion similar to batch normalization. First, its weights are
initialized so that the output of the actnorm layer has zero
mean and unit variance. Then its parameters are learned
without any constraint.

Permutation: RealNVP proposed to use a fixed permutation
to shuffle the channels as the coupling layer only acts on
half of the channels. Later, Kingma and Dhariwal [2018]]
replaced this permutation with a 1x 1 convolution in Glow.
These can easily be inverted by inverting the kernel. Finally,
Hoogeboom et al.[[2019] replaced this 1x1 convolution with
the so-called emerging convolution. These have the same
receptive convolution with a kernel of arbitrary size. How-
ever, they are computed by convolving with two successive
convolutions whose kernel is masked to help the inversion
operation.

Coupling layer: The coupling layer is used to provide flex-
ibility to the architecture. The Feistel scheme (Hoang and
Rogaway|[2010]) inspires its design. They are used to build
an invertible layer out of any given function f. Here f is
learn as a convolutional neural network.

y1 =21, yo = (v2+f(71))*xexp(g(r1))

y = [y1, 2]

Where we get 1 and x5 by splitting the input = along the
channel axis.

Invertible Convolutional Networks. Complementary to
normalizing flows, there has been some work done design-
ing more flexible invertible networks. For example, |Gomez
et al[[2017] proposed reversible residual networks (RevNet)
to limit the memory overhead of backpropagation, while (Ja;
cobsen et al.|[2019]]) built modifications to allow an explicit
form of the inverse, also studying the ill-conditioning of the
local inverse. Ho et al.|[2019] proposed a flow-based model
that is the non-autoregressive model for unconditional den-
sity estimation on standard image benchmarks

Invertible 1x 1 Convolution: |Kingma and Dhariwal|[2018]]
proposed the invertible 1x 1 convolution replacing fixed per-
mutation (Dinh et al.|[2017]]) that reverses the ordering of the
channels. Hoogeboom et al.| [2019]] proposed normalizing
flow method to do the inversion of 1x1 convolution with
doing some padding on the kernel and two distinct auto-
regressive convolutions, which also provide a stable and
flexible parameterization for invertible 1x 1 convolutions.

Invertible nxn Convolution: Reformulating nxn convolu-
tion using invertible shift function proposed by [Truong et al.
[2019] to decrease the number of parameters and remove the
additional computational cost while keeping the range of the
receptive fields. In our proposed method, there is no need
for the reformulation of standard convolutions. [Hoogeboom
et al.| [2019] proposed two different methods to produce the



invertible convolutions : (1) Emerging Convolution and (2)
Invertible Periodic Convolutions. Emerging requires two
autoregressive convolutions to do a standard convolution,
but our method requires only one convolution as compare
to the method proposed by [Hoogeboom et al.|[2019] and
increase the flexibility of the invertible nxn convolution.

3 OUR APPROACH

We propose a novel approach for constructing invertible

33 convolutions and coupling layers for normalizing flows.

We propose two modifications to the existing layers used in
previous normalizing flow models:

* convolution layer: instead of using 1x 1 convolutions
or emerging convolutions, we propose to use standard
convolutions with a kernel of any size with a specific
padding.

* coupling layer: we propose to use a modified version of
the coupling layer designed to have a bigger receptive
field.

We also show how invertibility can be used to manipulate
images semantically.

3.1 INVERTIBLE 3 x 3 CONVOLUTION

We give necessary and sufficient conditions for an arbitrary
convolution with some simple modifications on the padding
to be invertible. Moreover, the inverse can also be computed
by an efficient back substitution algorithm.

Definition 1 (Convolution). The convolution of an input
X with shape H x W x C with a kernel K with shape
ExkxCxCisY =X x K of shape (H — k + 1) x
(W — k + 1) x C which is equal to

C
Y;,j,co = § § Ii+l,j+k,ciKl,k,ci,c,, (1)

Lh<k ci=1

In this setting, the output Y has a smaller size than the
input to prevent this input is padded before applying the
convolution.

Definition 2 (Padding). Given an image I with shape H X
W x C, the (t,b,1,r) padding of I is the image I of shape
(H+t+0b) x (W+1+r)x C defined as

i {Ii—t,j—l,c
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0

As zero padding does not add any bias to the input, the
convolution between a padded input I and a kernel K is still

fi—t<Handj—1l<W

otherwise
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a linear map between the input and the output. As such, it
can be described as matrix multiplication.

An image I of shape (H, W, C) can be seen as an vector
I of RTXWXC I the rest of this paper we will always
use the following basis I; ; . = _;+cj+CHi. For any index
i < HWC, let (iy, 1., i.) denote the indexes that satisfy
I = I, i, ;.. Note that i < jiff (iy,iz,5c) < (jys Jus Je)
where < denotes the lexicographical order over R3. If C' = 1
this means that the pixel (j, j) is on the right or below the
pixel (iy,iz).

Definition 3 (Matrix of a convolution.). Let K be a kernel
of shape k x k x C' x C. The matrix of a convolution of
kernel K with input X of size H x W x C with padding
(t,b,1,r) is a matrix describing the linear map X — XK.

Characterization of invertible convolutions: We con-
sider convolution with top and left padding only. For such
convolutions, we give necessary and sufficient conditions
for it to be invertible. Let K be the kernel of the convolution
with shape 3 X 3 X N x N where 3 x 3 is the window size,
and N is the number of channels. Note that number of input
channels should be equal to the number of output channels
for it to be invertible.

Lemma 1. Lety = Mz,

M is a lower triangular matrix with all diagonal entries
=Ks3

Where the matrix M is which produces the equivalent result
when multiplied with a vectorized input (Z).

Proof. Consider any entry in the upper right half of M.
That is (4,7) such that ¢ < j according to the ordering
given in the definition of M. M; ; is nothing but the scalar
weight that needs to be multiplied to the jth pixel of input
when computing ith pixel of the output. The linear equation
relating these two variable is as follows:

3 3
yi:E E K3 1 3-kTi,—1,i,—k

1=0 k=0

From this equations follows that if j, > i, or j, > 7, then
the ith pixel of the output does not depend on the jth pixel
of the input and thus M; ; = 0. This also justifies that all
diagonal coefficients of M are equal to K3 3 O

We first describe our conditions for the case when NV = 1.
We prove the following theorem.

Theorem 1 (Characterization for N = 1).

M is invertible iff K33 # 0.
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Figure 1: (a).Top: first four is kernel matrix and fifth is input matrix with the standard padding that give the bottom
convolution matrix, Bottom: the convolution matrix corresponding to a convolution with kernel of size 3 applied to an input
of size 4 x 4 padded on both sides and with 2 channels. Zero coefficients are drawn in white, other coefficient are drawn
using the same color if they are applied to the same spatial location albeit on different channels. (b) Top: an alternative
padding scheme that results in a block triangular matrix M, Bottom: The matrix corresponding to a convolution with kernel
of size 3 applied to an input of size 4 x 4 padded only on one side and with 2 channels. (c) Top: an masked alternative
padding scheme that results in a triangular matrix M, Bottom: the matrix corresponding to a convolution with kernel of size
3 applied to an input of size 4 x 4 padded only on one side and with 2 channel. One of the weight of the kernel is masked.

Note that the equivalent matrix M is triangular.

Proof. The proof of the theorem uses LemmalI] Since M is
lower triangular, the determinant is nothing but the product
of diagonal entries, which is = K?’)ﬁ’gw where h,w is the
dimensions of the input/output image. U

At its core, the convolution layer is a linear operation. How-
ever, we have no guarantees regarding it as invertibility. The
result z of the convolution of input z with kernel k can be
expressed as the product as = with a matrix M. When zero-
padding is used around the input so that x and z have the
same shape, the matrix M is not easily invertible because
the determinant of M can be zero (see matrix M in Figure

[Tka)).

However, when padding only on two sides (left and top),
the corresponding M is blocked triangular (see Figure[T(b)).
To further ensure invertibility and speed up the inversion
process, we also mask part of the kernel so that the matrix
corresponding to the convolution is triangular, see in Figure
c) and for more details which K(n,n) we need to mask
see Appendix{B] In this configuration, the Jacobian of the
convolution can also be easily computed. For further details
of the padding the input, see Appendix{A]

3.2 QUAD-COUPLING

The coupling layer is used to have some flexibility as its
functions can be of any form. However, it only combines
the effects of half channels. To overcome this issue we
designed a new coupling layer inspired from generalized
Feistel (Hoang and Rogaway| [2010]) schemes. Instead of

dividing the input z into two blocks we divide it into four
x = [x1,xa, T3, x4] along the feature axis. Then we keep
21 unchanged and use it to modify the other blocks in an
autoregressive manner (see Figure [2)):

Y1 =1 3)
Y2 =(z2 + fi1(x1)) * exp(g1(x1)) 4
y3 =(x3 + fa(x1,z2)) * exp(ga(z1, 2)) (5)

ya =(x4 + f3(x1, 22, 23)) * exp(g3(x1, x2,23)) (6)

where (f;)i<3 and (g;);<3 are learned. The output of the
layer is obtained by concatenating the (y;);<4.

4 EXPERIMENTAL RESULTS

The architecture is based on [Hoogeboom et al.| [2019]. We
modified the emerging convolution layer to use our standard
convolution. We also introduced the Quad-coupling layer in
place of the affine coupling layer. Finally, we evaluate the
model on a variety of models and provide images sampled
from the model. For detailed overview of the architecture
see Figure[3]

Training setting: To train the model on Cifar10, we used
the 3 level (L) and depth (D) of 32 and Ir 0.001 for the 500
epochs. To train on ImageNet32, L = 3, D = 48, Ir 0.001
for the 600 epochs and for ImageNet64, L = 4, D = 48,
Ir 0.001 for the 1000 epochs. See Figure [3] for the model
architecture.
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Figure 2: The Quad-coupling layer, each input block X
has the same spatial dimension as the input X but only
one quarter of the channels. Each of the function f;, fo
and f3 is a 3 layer convolutional network. € symbolizes
a component-wise addition. The multiplicative actions are
not represented here.
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Figure 3: Overview of the model architecture. Left, the flow
modules we propose: containing inv 3 X 3 convolution. The
diagram on the right shows the entire model architecture,
where the flow module is now grouped. The squeeze module
reorders pixels by reducing the spatial dimensions by a half,
and increasing the channel depth by four. A hierarchical
prior is placed on part of the intermediate representation
using the split module as in (Kingma and Dhariwall [2018])).
x and z denote input and output. The model has L levels,
and D flow modules per level.

Quantitative results: The Comparison of the perfor-
mance of 3 x 3 invertible convolution with the emerging con-
volution (Hoogeboom et al.|[2019])) for the cifar10 dataset
in Table[I] The performance of our layers was tested on CI-

FARI10 (Krizhevsky et al.|[2009]), ImageNet (Russakovsky
[2015])) as well as on the galaxy dataset
[2018]) see Table[2] We also tested our architecture

on networks with a smaller depth (D = 4 or D = 8) see
Table 3] which could be used when computational resources
are limited as their sampling time is much lower. In this
case, using standard convolution and Quad-coupling offers
a more considerable performance improvement than with
bigger models (see Table 3).

Our 3x3 Inv. conv
3.4209
3.3879

Emerging 3 x3 Inv. conv
3.3851
3.3612

Affine
Quad

Table 1: Comparison of the performance (in bits per dimen-
sion) achieved on the Cifar10 dataset with different coupling
architectures.

Glow | Emerging | 3 x3 | Quad

Cifar10 3.35 3.34 3.3498 | 3.3471
ImageNet32 | 4.09 4.09 4.0140 | 4.0377
ImageNet64 | 3.81 3.81 3.8946 | 3.8514
Galaxy — 22722 | 2.2739 | 2.2591

Table 2: Performance achieved on the Cifar10 and Imagenet
datasets after a limited number of epochs (500 for Cifar10,
600 for ImageNet32,ImageNet64 and 1000 for Galaxy).
Emerging results were obtained by using the code provided
in[Hoogeboom et al.|[2019], 3 x 3 is replacing the emerging
convolutions by our 3 x 3 invertible convolutions and Quad
uses Quad-coupling on top of this.

Figure 4: Sample images generated after training on the
cifar dataset.

Sampling Times: We compared our method’s sampling
time (Table d) against Glow (Kingma and Dhariwal| [2018]))
and Emerging Convolutions (Hoogeboom et al] [2019]).
Our convolution still requires solving a sequential problem
to be inverted and, as such, need to be inverted on CPU,
unlike Glow that can be inverted while performing all the
computation on GPU. This explains the gap between the
sampling time of our model compared to Glow. However, it
is still roughly two times faster than emerging convolutions;
this comes from the need to solve two inversion problems to
invert one emerging convolution layer. The Quad-coupling
layer does not affect sampling time too much.




Emerging Ours
Dataset Performance | Sampling time | Performance | Sampling time Depth
Cifar10 3.52 3.49
Imagenet32 4.30 245 4.25 1.31 4
Cifar10 3.47 346
Imagenet32 4.20 4.94 4.18 2.76 8

Table 3: Performance with smaller networks, when computational resources are limited. The performance is expressed in
bits per dimension and the sampling time is the time in seconds needed to sample 100 images. All networks were trained for

600 epochs.

(d)
Figure 5: From left to right : the result obtained when using the network to change hair colour (a), remove glasses (b), and
visage shape (c). For every example, the original image is shown on the left. Fig.(d) here, we can see the result of gradually
modifying the age parameter. The original image is the fourth from the left (middle one).

Glow | Emerging | 3 x 3 | Quad

Cifar10 0.58 18.4 9.3 10.8
Imagenet32 | 0.86 27.6 14.015 | 16.1
Imagenet64 | 0.50 160.72 82.04 | 84.06

Table 4: Time in seconds to sample 100 images. Results
were obtained with Glow running on GPU and the other
methods running on one CPU core.

Interpretability results: To show the interpretability of
our invertible network, we used the Celeba dataset
[2015])) which provides images of faces and attributes
corresponding to these faces. In Figure @ are the randomly
generated fake sample images for the cifar10 dataset. The
covariance matrix between the attributes of images in the
dataset and their latent representation indicates how to mod-
ify the latent representation of an image to add or remove
features. Examples of such modifications can be seen in
Figures[5{a, b, ¢) and [5[d).

S CONCLUSION

In this paper, we propose a new method for Invertible nxn
Convolution. Coupling layers solve two problems for nor-
malizing flows: they have a tractable Jacobian determinant
and can be inverted in a single pass. We propose a new type
of coupling method, Quad-coupling. Our method shows

consistent improvement over the Emerging convolutions
method, and we only need a single CNN layer for every
effective invertible convolution. This paper shows that we
can invert a convolution with only one effective convolu-
tion, and additionally, the inference time and sampling time
improved notably. We show the inversion of 3x3 convo-
lution and the generalization of the inversion for the nxn
kernel. Furthermore, we demonstrate improved quantitative
performance in terms of log-likelihood on standard image
modelling benchmarks.
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A INPUT PADDING

To make sure the matrix (M) block triangular, padding of
(k +1)/2 on top and left of input (x) is applied where & is
the size of kernels.

B MASKING OF KERNELS

Considering the assumption that the numbers of input chan-
nels is equals to the output channels (/N) then masking of
the kernels depends only on the numbers of channels (/V),
let the kernel size is k x k and the K ZZ are the entries
corresponding to block (N x IN) diagonals entire in the con-
volution matrix (M), where a and b are a,b € 1,2,..., N.
KZZ is a square matrix (C') of size N x N) and the diagonal
entries of the block of matrix M are the diagonal of C and
to ensure the invariability of the M, we have to set all the
entries Cy p to zero when a > b and one when a = b.

C COMPARISON OF OUR METHOD
WITH THE EXISTING INVERTIBLE
NORMALIZING FLOW METHODS

See figure[6]
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Abstract. Quality assessment of agricultural produce is a crucial step in mini-
mizing food stock wastage. However, this is currently done manually and often
requires expert supervision, especially in smaller seeds like corn. We propose a
novel computer vision-based system for automating this process. We build a novel
seed image acquisition setup, which captures both the top and bottom views.
Dataset collection for this problem has challenges of data annotation costs/time
and class imbalance. We address these challenges by i.) using a Conditional Gen-
erative Adversarial Network (CGAN) to generate real-looking images for the
classes with lesser images and ii.) annotate a large dataset with minimal expert hu-
man intervention by using a Batch Active Learning (BAL) based annotation tool.
We benchmark different image classification models on the dataset obtained. We
are able to get accuracies of up to 91.6% for testing the physical purity of seed
samples.

Keywords: Agriculture - Quality Testing - Generative Methods - Active Learning
- Automation - Computer Vision - Image Classification.

1 Introduction

Quality checking is an essential step to ensuring food grain supplies. It ensures that
stocks with different compositions of defective grains are not mixed and can be pro-
cessed, packaged, and sold for appropriate uses, from high quality, economy packaging
to animal feeds. However, quality checking for small grains and seeds like corn, rice
is a tedious task done mainly through experts by visual inspection. Manual inspections
are not scalable because of the human resources required, inconsistency between in-
spectors, and slower processing pipeline. An automated approach to seed/grain quality
testing can solve many of these problems, leading to better usage and distribution of
food stocks.

With the advent of Deep Neural Networks (DNNs), data-driven models have be-
come increasingly adept at image classification/detection tasks. DNN models have been
used in literature for seed quality testing problems [10-12]. However, there are some
significant impediments to their widespread adoption. DNNSs require large-scale datasets
for giving high accuracies, which matches human inspectors. However, creating large-
scale, good-quality datasets is challenging. Annotating seed data sets with defects re-
quires experts with specialized knowledge. Also, a considerable imbalance of seeds can
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Fig. 1. Overview of our proposed system.

occur in a sample with a specific defect, which results in small datasets highly skewed
to non-defective classes, with minimal images in some defective categories. Another
main problem is that the defective part of the seed might not be visible from the top
view.

We propose addressing class imbalance and annotation costs using machine learning
techniques such as generative methods and BAL. We use active learning to select the
most informative images from unlabeled data to be labelled by experts, leading to lesser
annotation. We use generative methods, expressly conditional generative adversarial
networks, to generative images of each class to address the class imbalance problem.
We also develop a novel hardware design, which examines the seeds from the top and
bottom, leading to better classification accuracy.

Active learning uses to select an initial batch of images to be annotated. After a
round of annotation, the next batch is determined based on the uncertainty of classifi-
cation remaining conditioned on the initial batch of annotation. Batch Active Learning
also ensures that the images within the same batch are diverse compared to basic Active
Learning methods. We build an annotation tool, which shows the next batch obtained
by Active Learning. It also incorporates Ul elements like suggestions for labels from
the partially trained model on images labelled so far, which leads to short annotation.
Using this tool, we build a dataset of 26K corn seed images, classified into pure seeds
and three other defective classes (broken, silkcut, and discoloured).

However, the dataset created is highly imbalanced, with images of pure seeds being
40% while some of the defective classes being as low as 9% with 4 classes in total. We
use a Conditional Generative Adversarial Network (CGAN) to address the class imbal-
ance problem. A CGAN (BigGAN) trained on the labelled base dataset conditioned on
the labels to generate good quality seed images. Then the CGAN is used to generate
images that are indistinguishable from real images for each class. Hence this results
in a more balanced dataset. Finally, an image classifier DNN is trained on this dataset
(with the fake images added), leading to better accuracy of 80%.

Main Contributions. We build a computer vision-based system for large-scale auto-
mated quality checking of corn seeds.



Automated Seed Quality Testing System using GAN & Active Learning 3

1. We give a better hardware design, which takes images from the top and bottom to
inspect defective/pure seeds (see Section 3.1).

2. We build an annotation tool using Batch Active Learning and specific Ul elements
to accelerate the annotation process (see Section 3.2).

3. We use Conditional Generative Adversarial Networks to generate fake images of
each class, leading to a larger and more balanced training dataset (see Section 3.3).

4. We build a dataset of 26K corn seed images labeled as pure, broken, silkcut, and
discolored (see Section 4.1).

5. We train an image classifier on the dataset with generated and real images, leading
to improved accuracy (see Section 4).

2 Related Works

ML for Seed Quality Testing and Agriculture. Machine vision for precision agricul-
ture has attracted research interest in recent years [3,9, 8, 12]. Plant health monitoring
approaches are addressed, including weed, insect, and disease detection [3]. With the
success of DNNs, different approaches have been proposed to tackle problems of corn
seed classification [12, 10, 11]. Fine-grained objects (seeds) are visually similar by a
rough glimpse, and details can correctly recognize them in discriminative local regions.

Generative Methods for Class Imbalance. Generative models can not only be used
to generate images [17], but adversarial learning showed good potential in restoring
balance in imbalanced datasets [18]. Generative models can generate samples that are
difficult for the object detector to classify. Creating a balanced dataset is a problem be-
cause the availability of one type of sample (seed) with defects or impurity compared
to others is not always the same. While creating a new dataset, the imbalance of the in-
stance, and we applied the fake image generation to overcome this. We use a generative
model for the Image-to-image translation with conditional adversarial networks[15].

Batch Active Learning for Fast Annotation. Manual data annotation can be very slow
and costly needs expertise for the same. There is no single standard format when it
comes to image label/annotation. In our dataset, images contain only seeds, and each
image is labelled one class out of four classes. Labelling the fine-grained image is chal-
lenging due to the significant intraclass variance and slight inter-class variance to rec-
ognize hundreds of sub-categories belonging to the same basic-level category. The aim
of Active Learning (AL) is to discover the dependence of some variable (y) on an in-
put variable (z) [2]. We use the Batch Active Learning (BatchBALD) [1] to label the
images with the help of a small no. of manually labelled images.

3 Approach

We approach the problem of seed quality testing by first building a camera setup and
preprocessing pipeline to obtain individual seed images from a sample which are then
labelled (see Section 3.1). Then, since the data is highly imbalanced and to minimize
the expert labelling effort, we propose two methods: i.) use Active learning-based UI
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tool to aid the creation of a larger dataset with the least effort from the expert human
intervention (see Section 3.2) ii.) using Conditional Generative Adversarial Networks
(CGAN) to generate images to solve the class imbalance problem (see Section 3.3).

3.1 Hardware Setup and Primary Dataset Creation.

Our seed quality testing approach makes use of a camera setup shown in Figure.2 below.
In this setup, we use two cameras, one on the top and one bottom. We place a bunch of
seeds in the middle on transparent glass, take a picture one from each camera and save
it to the computer connected to the camera. To block the other side of the transparent
glass, we use a thin white film. While capturing the top view of the seeds, we put the
thin film below the glass, which works as a white background, similar to the bottom
view. Thus, the top camera gives the picture of a top view of each seed, and similarly,
the bottom camera capture the bottom picture of seeds to train the classification model.
We use the top and bottom images of seeds as individual input images, which can get
two independent predictions, increasing the accuracy.

For seed classification, individual corns in the
captured image should be accurately segmented
first. During placing the seeds on the transpar-
ent glass, we mind the gap between the neigh-
bour seeds to avoid the overlapping of seeds seg-
mentation [13] of the image done by the Water-
shed method because this transform decomposes
an image completely and assigns each pixel to a
region or a watershed, and image segmentation
can be accomplished simultaneously. After the
segmentation, the expert’s labelling of each seed image is done for the 17802, con-
sidering the top and bottom two different seed images. To classify new seeds after the
training model, we take a picture of a sack of seeds and use the segmentation to detect
the location [13] of each seed and give it as the input to the model classification.

Top Camera

Fluorescent
lamps (LED)

Thin Film

Transparent
Glass

Bottom Camera

Fig. 2. Image capturing setup and sam-
ple image.

3.2 Batch Active Learning (BAL) for Fast Annotation.

Data efficiency is a crucial problem in Deep Learning. Active learning, a sub-field in
Machine learning, is centred around attaining data efficiency. To avoid the tedious data
labelling of a large dataset, in Active Learning, we iteratively query the most infor-
mative points from a set of unlabelled points. However, in practical Active learning,
rather than acquiring single points, we query a batch of points from an unlabelled set
of most informative and diverse points. The question is which subset of points of the
unlabelled set should be added to the training set so that the model would learn the
fastest when trained on this updated training set than picking any other subset of the
unlabelled points.

Moreover, since we can label multiple images in a single screen shown as a grid to
the annotator (see Fig 4), there is a possibility of sampling points belonging to the same
class of the underlying distribution. In such a scenario, we will have a model being
accurate in one class but not in all other classes. To avoid this situation, we query the
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least confidence, and the queried set should be diverse. Batch Active Learning (BAL)
was proposed to solve such problems, which we use to build an annotation tool.

3.3 Conditional Image Generation to Balance Dataset

e B = E Generative Adversarial Networks (GANSs)
¥FTIN999 e e are one of the state-of-the-art approaches
D¢ Sl for image generation. Existing works pri-
marily aim at synthesizing data of high
visual quality [15, 16]. We use BigGAN

' [15], as it gives good quality images in
Fig. 3. Example of interpolation two GAN gen-  similar datasets. Training generative ad-
erated images. A gradual lin.ear transformation  yergarial networks (GANG) using too lit-
from one 'seeds to another using latent vector(z) tle data typically leads to discriminator
interpolation. (D) over-fitting [14]. GANSs training is
dynamic and sensitive to nearly every aspect of its setup (from optimization parame-
ters to model architecture). Image Interpolation: Exploring the structure of the latent
space (z) for a GANs model is interesting for the problem domain. It helps develop an
intuition for what has been learned by the generating model (see Figure 3). We use im-
age interpolation to evaluate whether the inverted codes are semantically meaningful.
We interpolate one type of seed to other classes in a large diversity. As we can see in
Figure 3 left to right, how smoothly the interpolation works, which validates that the
GAN has learned a good latent representation for images in the dataset.

AR AR AR AR >

4 Results

4.1 Dataset & Experimental Details

Our primary dataset contains four classes: broken, discolored, pure, and silkcut (B,
D, P, S), having different instances for each class (Imbalance). Images are taken for
both sides of the corn, top-view(8901) and bottom-view(8901), as explained above in
the hardware setup section-3.1. The primary dataset is highly imbalanced. To analyze
the class confusion for seeds, we explore the confusion matrix in the result section4.
Instances of each class and their % in the primary dataset are as follows: broken 5670
(32%), discolored 3114 (17.4%), pure 7267(40.8%), silkcur 1751(09.8%). We use two
methods to add more images into the primary dataset: i.) adding GAN generated images
to balance the dataset and ii.) adding more captured images labeled using the Batch
Active Learning method.

In case of adding fake images to balance the dataset, we split the primary dataset
into two parts train and validation in a 70:30 ratio, ensuring that each class has the
same % of instances on each set. The train set is used to train the BigGAN model, and
after adding fake images generated by BigGAN into the train set, this new train set is
used to train the classification model. Finally, the Validation set is used for testing the
classification model only.

We generated fake images as follows: broken 2937, discolored 5823, pure 2937,
silkcut 5823 instances and added them into the train set to balance the data set. In the
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case of adding newly captured images labelled using the Batch Active Learning method
after image segmentation, new 9000 labelled images are added into the primary dataset.
This new dataset contains 26,802 images split into Train and Validation set 80 : 20,
respectively. The train set is used to train the classification model, and the Validation
part is used to test the classification model.

We train different Convolutional Neural Networks (CNN) models on this dataset
in Section 4.4. First, we use transfer learning; the models are initialized with weights
learned from ImageNet Classification [6]. Then, we trained the DNNs on the train set
of the primary dataset to fine-tune the model and compare the validation accuracy for
a different model (see tablel). Since Resnetl8 has the highest accuracy, we trained
it on three different datasets: i.) the primary dataset, ii.) with fake images generated
using BigGAN, and iii.) after adding the newly annotated images labelled by the Batch
Activation Learning method.

4.2 Batch Active Learning (BAL)

We start with the corn seed primary dataset with 17,802 images and do a 90%-10%
train-validation split to train the BAL model. We also have an unlabelled dataset of corn
seeds of 26,777 to label using BAL. Specifically, we use the BatchBALD [1] method.
An active learning cycle involves retraining a model on the data annotated so far. Dur-
ing training, we use early stopping to avoid over-fitting. The used acquisition function
is based on model uncertainty and ensures that the queried images are diverse in the
predicted distribution models uncertainty entropy. Next, pick 5000 images that have the
highest entropy (most informative points). To ensure diversity, perform k-means clus-
tering on these 5000 images until stabilization to find the 1000 cluster centres. After
that, find the points in the dataset closest to each of these 1000 centres. This spits out
1000 images queried by the above acquisition function along with their predicted la-
bels. We then render these images and their predicted labels via an annotation tool that
we have built for human annotation (see Figure.4). Next step, the training set is updated
by accumulating these images and the labels that the annotator makes. A reinitialized
model is then trained on the updated training set, and the cycle continues.

S ) @

~ discolored ~ pure ~ discolored @ pure ~ discolorec @pure ~ discolored ~ pure
S broken ~ silkcut ~ broken © silkcut ~ broken © silkcut ~ broke

Fig. 4. The user interface of the annotation tool. A single-screen shows a batch of images. If
the suggestion is wrong, the user can relabel it. After a few active learning cycles, the model
suggestions become more accurate, resulting in less effort from the annotator. Purple box: label
suggested by the model.

We record the validation accuracy for every cycle and find that with labelling only
9000 images of the 26,777 original unlabelled set, there is a significant increase in the
validation accuracy from 46.83% to 73.97% which is shown in Figure 5. Moreover,
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the annotation time is taken to annotate the first queried batch of 1000 images fell
drastically from 1266.42 seconds to 682.02 seconds (which is the time taken to annotate
the 8th queried batch) as reflected in Figure 5, thereby decreasing the annotation cost
and efficiency significantly. After the 9th cycle, the total labelled instances in the dataset
are 26802 after adding new labelled images.

4.3 Conditional Image Generation (CGAN)

We trained the conditional GANs to generate the fake images to add to the dataset and
reduce the class instances’ imbalance. To train BigGAN, the primary dataset is split
into two sets, train and validation 70 : 30, respectively. The train set is used to train
the BigGAN and, after adding the fake images, to train the classification model. The
validation set is used only to test the classification model. We trained the Generator (G)
and Discriminator (D) of the BigGAN for 250 epochs, and after training, we passed a
random noise and label to the G to generate the fake images. Hyper-parameters used
are as follows: input image resolution= 256 x 256 x 3, learning rate = 2¢~%, batch
size = 16, dimension of the latent vector space dim(z) = 128. BigGAN is trained in
alternate phases for D, G and we ensure that each input batch contains an equal no.
of images from each class. Figure 6 shows and compares that the image generated is
indistinguishable from real images.
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Fig. 6. Sample images from primary dataset (left) & ones generated using BigGAN (right).
4.4 Classification

We have validated the effectiveness of Active Learning in Section 4.2 and analyzed the
quality of images generated by the Conditional GAN in Section 4.3. Here we discuss
the accuracy of the classification model trained on the dataset obtained.

The highest validation accuracy of the primary dataset is 71.02% (see Table 1)
among different deep learning models. In the case of adding fake images into the train
set of the primary dataset to balance the dataset, the validation accuracy after training
the classification model on the new train set increases the form 71.02% to 79.24% (see
Table 2), thereby validating the approach of using CGAN to solve the class imbalance
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Model Ace. % # fake images Acc.% Phys. Purity %

Zero 71.00 80.58

t18 71

resne 20K 79.24 88.25
squeezenet 71 40K 78.23 87.68
resnet50 70 100 8.88 8 .24
mobilenet 68 K i -
wideResnet50 69 Table 2. Validation accuracy comparison before and after

adding the fake images to dataset(for resnet18 DNN) solv-
ing imbalance. Accuracy: four class classification accuracy.
Physical Purity: Pure vs Impure(Two class classification)

Table 1. Validation accuracy for
different CNN models on pri-
mary dataset.

oas T -0.5
0.80 04
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o
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—— Train Accuracy 0.1
Val Accuracy
0.65
o 10 20 30 40 50 60 70
Epochs

Fig.7. (Left) Train and Validation accuracy of the ResNetl8 using pre-trained model. (Right)
Confusion Matrix: heat map of validation images (4946) after training the Resnet18 on train set
of new dataset (26802). Ground Truth: rows, Predicted: columns. B: broken, D: discolored, S:
silkcut, P: pure.

problem. The graph in Figure 7 plots the training and validation accuracy for the Resnet
18 on the dataset after adding new images labeled by the BAL. This further improves
the accuracy to 85.24% and we also get the physical purity (pure vs impure classifica-
tion) accuracy to be 91.62%. The classwise accuracies are as follows: broken 71.20%,
discolored 69.08%, pure 94.94%, silkcut 75.82%.

Some images in the dataset have high-class ambiguity. To analyze, we used the
confusion matrix given in Figure 7 for the validation set. Each matrix entry gives the %
of images of specific ground truth (rows) and a specific predicted class (columns). As
can be seen from Figure 7, the classes pure and broken are most confusing followed by
discolored and broken.

5 Conclusions & Discussion

We propose a novel computer vision-based automated system that can be used for corn
seed quality testing. A novel image acquisition setup is used so that two different view-
points are obtained for every seed. Furthermore, we decrease the human intervention
required for labelling by building a BAL based UI tool. We also address the class im-
balance problem by using Conditional GANs (BigGAN) to generate more images of
classes with a small dataset. We believe similar approaches can be used for quality test-
ing of various seeds and vegetables and can decrease wastage and human intervention.
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